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Abstract

The Spectral Volume (SV) method is extended to the 2D Euler equations. The focus of this paper

is to study the performance of the SV method on multidimensional non-linear systems.

Implementation details including total variation diminishing (TVD) and total variation bounded

(TVB) limiters are presented. Solutions with both smooth features and discontinuities are utilized

to demonstrate the overall capability of the SV method.

1. Introduction

We continue the development of the Spectral (Finite) Volume (SV) method for hyperbolic

conservation laws on unstructured grids. Ultimately, the SV method is a Godunov-type finite

volume method, which has been under development for several decades, and has become the-

state-of-the-art for the numerical solution of hyperbolic conservation laws. Similar to the

Godunov method, the SV method has two key components. One is data reconstruction, and the

other is the (approximate) Riemann solver. What distinguishes the SV method from the k-exact

finite volume (FV) method is in the data reconstruction. Instead of using a (large) stencil of

neighboring cells to perform a high-order polynomial reconstruction, the unstructured grid cell -

called a spectral volume - is partitioned into a "structured" set of sub-cells called control volumes

(CVs), and cell-averages on these sub-cells are then the degrees-of-freedom (DOFs). These

DOFs are used to perform a high-order polynomial reconstruction inside the SV. All the spectral

volumes are partitioned in a geometrically similar manner in a simplex, and thus a single

reconstruction is obtained. Next, the DOFs are updated to high-order accuracy using the usual
Godunov method. Numerical tests with scalar conservation laws in both 1D and 2D and 1D

systems have verified that the SV method is indeed highly accurate, conservative, and

geometrically flexible.

2. Spectral Volume Method for the 2D Euler Equations

The unsteady 2D Euler equation in conservative form can be written as



OQ+ OE +OF =0 (2.1)
--_-- --_-x 0y '

where Q is the vector of conserved variables, E and F are the inviscid flux vectors. Assume that

we solve (2.1) in the computational domain _ subject to proper initial and boundary conditions.

The domain f_ is discretized into N non-overlapping triangular spectral volumes (SVs)
N

_2=U s,.
i=l

Given a desired order of accuracy k for (2.1), each spectral volume Si is then partitioned into m =

k(k+l)/2 control volumes (CVs), and thej-th CV of Si is then denoted by C,4. Let q denote any

of the conservative variables in Q. The ceil-averaged conservative variable q at time t for control

volume Ci.j is defined as

I q(x, y, t)d._dy

_.j(t) = c,.j , j = 1 ..... m, i = 1 .... , N, (2.2)
Vi.j

where V j is the volume of Ci, j . Given the cell-averaged conservative variables for all the CVs

in Si, a polynomial pi(x,y)e pk-1 (the space of polynomials of degree at most k - 1) can be

reconstructed such that it is a k-th order accurate approximation to the function q(x,y) inside Si:

p_(x,y)=q(x,y)+O(hk), (x,y)eS,, i=1 .... ,N. (2.3)

This reconstruction can be solved analytically by satisfying the following conditions:

f p, (x, y)dxdy

Ci,j

V_,j = q-]4' J = 1..... m. (2.4)

This polynomial pi(x,y) is the k-th order approximation we are looking for as long as the function

region covered by Si. The reconstruction can be more convenientlyq(x,y) is smooth in the

expressed as

where Lj(x, y)6 pk-i

m

p,.(x,y)=_Lj(x,y)_,.,j,
j=1

are the "shape" functions which satisfy

(2.5)

f L,.(x, y)dxdy

c,,j - 8jm . (2.6)
Vi4

The high-order reconstruction is then used to generate high-order updates for the cell-averaged

state variable on the CVs. Integrating (2.1) in Ci,j, we obtain the following integral equation for

the CV-averaged mean

dQ_,j + __I _2 f (f • n)dA = 0, (2.7)
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whereQi,j is the vector of the CV-averaged conservative variables in Ci,j, f = (E, F), K is the

number of faces in Cij, and Ar represents the r-th face of Ci,j. The surface integration on each face

can be performed with a k-th order accurate Gauss quadrature formula, i.e.
J

f (f • n)dA = £wrof(Q(xrq yrq)).nrA _ +O(Arhk), (2.8)
At q=l

where J = integer[(k+l)/2] is the number of quadrature points on the r-th face and, Wrq are the

Gauss quadrature weights, (Xrq, Yrq) are the Gauss quadrature points, h is the maximum edge

length of all the CVs. Time t is omitted whenever there is no confusion. If f = constant, the

following identity exists:
K

_._ I (f * n)dA= O. (2.9)
r=l Ar

Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for the

faces of Cij, i.e.,
K K J

Z I (f " n)dA = 2ZWrqf(Q(Xrq, Yrq ))enrAr +O(Arhk+l)" (2.10)
r=l A, r=l q=l

Since O(V i) = O( Arh ) , we therefore have
K J

1 _(fe.)dA= 1--_--ZZwrqf(Q(xrq, yrq)).nrAr+O(hk ). (2.11)
_,j _=lAt v,.,j ,-:t o=1

With the polynomial distribution on each SV, the state variable is most likely discontinuous

across the SV boundaries. Therefore, the flux integration involves two discontinuous state

variables just to the left and right of a face of the SV boundary. This flux integration is carried

out using an exact Riemann solver or one of the Lipschitz continuous approximate Riemann

solvers or flux splitting procedures, i.e.,

f (Q(Xrq, Yrq))" nr "_ fmem(QL (Xrq' Yrq)'QR (Xrq' Yrq)'nr)' (2.12)

where Qc and QR are the vector of conservative variables just to the left and right of a face.

Substituting (2.12) into (2.11), we obtain
J

I( f • n)dA = ZWrqfRiem(QL(Xrq, Yrq),QR(Xrq, Yrq),nr)A_ + O(Arh k). (2.13)
Ar q=l

It is the Riemann solver which introduces the "upwinding", and dissipation into the SV method

such that the SV method is not only high-order accurate, but also stable. In this paper, we employ

Roe and local Lax-Friedrichs flux formula. Finally we obtain the following semi-discrete SV
scheme

d_j 1 _c :
dr' _=-:-_-_-_WrqfRie_(QL(Xrq'Y_)'QR(xrq'Y_q)'n')&=O'" (2.14)

Vi,j r=l q=l

For time integration, we use the third-order TVD Runge-Kutta scheme from.

3. Multi-Dimensional TVD and TVB Limiters

For the non-linear Euler equations, it is necessary to perform data limiting to maintain stability if

the solution contains discontinuities. There are two different ways of applying limiters in the

system setting. One way is to apply a limiter to each characteristic variable. The other is to apply

a limiter to each component of the vector of the conservative variables. The former has the nice



propertyof naturallydegeneratingto the scalarcaseif the hyperbolicsystemis linear, but the
latter is muchmoreefficient. In this paper,wechoosethecomponent-wiseapproachbecauseof
its efficiency.To this end,we first establishthefollowing numericalmonotonicitycriterion for
eachcontrolvolume

--rain --max
qi,j <- qi,j(Xrq'Yyq) <- q,,j ' (3.1)

--nTdx

where _ni,j and q,,j are the minimum and maximum cell-averaged solutions among all its

neighboring CVs sharing a face with Cio, i.e.,
--max

qi,j = max(_,.j, max _, _r)
l<_r<_K ,J,

_.min = min(_,.j, min _, r), (3.2)
t,j l<_r< K ,j,

and q,,j(xro, yyq) is the reconstructed solution at any of the quadrature points. If (3.1) is strictly

enforced, the resultant numerical scheme for the scalar case is TVD. However, it is well known

that TVD schemes are locally first-order at extrema, and may pollute the global accuracy of the

solution. In order to maintain the order of accuracy away from discontinuities, the TVB idea is

followed here, i.e., small oscillations are allowed in the solution. If we express the reconstruction

for the quadrature points in the following form

Aqrq = Pi (Xro, Yrq) -- q--<i'

then no data limiting is necessary if

Aqr q <_ 4M qhrZq, (3.3)

where hrq = _i,j-r_q I is the distance from the CV centroid to the quadrature point. In other

words, no data limiting is necessary if (3.3) is satisfied, even if (3.1) is not. Usually the constant

Mq is chosen to be the maximum second derivative of the solution. However Mq is a user chosen

parameter if there is a discontinuity in the solution. Note that a different Mq should be used for a

different conservative variable. In this paper, Mq is scaled according to the minimum and

maximum of the component, i.e.,

M q = M(qm, x - qn_n)" (3.4)

where M is a constant independent of the component, and qmo_rand qm,n are the maximum and

minimum of the solution q over the computational domain. If (3.3) is violated for any quadrature

point, then it is assumed that the CV is close to a discontinuity, and the solution in the CV is

locally linear, i.e.,

q_,i(x,y)=_.j +Vq, 4 o(r-r,,j), Vr_ C,4. (3.5)

The magnitude of the solution gradient is maximized subject to the monotonicity condition given

in (3.1). The original high-order reconstruction in the CV is used to compute a initial guess of the

gradient, i.e.,

Vq,.j
Ox ' Oy ,,,,"

This gradient may not satisfy (3.1). Therefore it is limited by multiplying a scalar (pc [0, 1] so

that the following solution satisfy (3.1)

q,.j(x, y) = _.j + _0Vq_,j .( r - r,.j ). (3.6)

In the case of M = 0, the limiter becomes TVD. The availability of cell-averaged data on the CVs

inside a SV makes this CV-based data limiting possible, whereas in the DG method, one can



only doanelementbaseddatalimiting. Dueto theincreasedlocal resolution,theSV method was

shown to have better resolutions for discontinuities than the DG method. This advantage should

also carry over to the multi-dimensional systems case.

4. Numerical Tests

1. Mach 3 Wind Tunnel with a Step

The 2D wind tunnel is 3 units long and 1 unit wide, with a step of 0.2 units high located at 0.6

units from the tunnel inlet. The initial condition is a Mach 3 right-going uniform flow. Inviscid

wall boundary conditions (reflective) are used for tunnel wall boundaries, while inflow and

outflow boundary conditions are used at the inlet and exit of wind tunnel. It is well known that

the comer of the step is a singularity, and can lead to a spurious Mach stem at the downstream

bottom wall, and an erroneous entropy layer at the bottom wall. In the present study, no special

treatments were used for the singularity to see how the singularity affects the numerical
solutions.

Four different grids with various grid resolution near the singular comer point were employed.

The first grid is nearly uniform with a mesh size of h = 0.025. The other three grids are

successively refined by halving the grid size near the comer. The four grids are shown in Figure

1. The computed density distributions at t = 4 with the second order SV scheme and a TVB

limiter (M - 10) is shown in Figure 2, and the corresponding third-order results are displayed in

Figure 3. First it is evident that the spurious Mach stem weakened considerably with increased

grid resolution near the comer point in both the second-order and third-order results. In addition,

the entropy layer downstream the shock reflection point also weakened. Note that the third-order

results have higher resolutions for the shock waves, as expected.

2. Double Mach Reflection

The computational domain for this problem is chosen to be [0, 4] x [0, 1]. The reflecting wall lies

at the bottom of the computational domain starting from x=l/6. Initially a right-moving Mach 10

shock is positioned at x=l/6, y=0 and makes a 60 ° angle with the x-axis. For the bottom

boundary, the exact post-shock condition is imposed for the region from x=0 to x=l/6 and a solid

wall boundary condition is used for the rest. For the top boundary of the computational domain,

the solution is set to describe the exact motion of the Mach i0 shock. The left boundary is set as

the exact post-shock condition, while the right boundary is set as outflow boundary. The results

at t=0.2 are shown. Figure 4 shows the density contours computed with the second SV scheme

and a TVB limiter (M = 10) on the coarse (Ax=Ay=l/60), medium (Ax=Ay=l/120) and fine

(Ax=Ay--1/240) grids. The corresponding results for the third SV scheme are shown in Figure 5.

It is obvious that the third order SV scheme captures the shock waves and the complex flow

structure under the triple Mach stem better than the second-order SV scheme.

5. Conclusions

The Spectral Volume method has been successfully extended to two-dimensional hyperbolic

systems of conservation laws. The extension to the system has been performed in a component-

wise manner. Both TVD and TVB limiters are also implemented in a component-wise manner.

This approach is very efficient, and has been shown to produce good numerical results for

smooth and non-smooth flow problems.



Figure 1.Fourcomputationalgridswith differentdegreesof refinementnearthesingularcomer
point
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Figure2,Computed densitycontourswith a second-orderIV schcme using a TVB limitcr

and M = 10
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Figure 3. Computed density contours with a third-order SV scheme using a TVB limiter
andM= I0
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Figure 4. Density contours computed with the second order SV schemes and a TVB limiter

(M = 10)
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(c)

Figure 5. Density contours computed with the third order SV schemes and a TVB limiter

(M = 10)
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